OWTNM 2016

24th International Workshop on Optical Wave & Waveguide Theory and Numerical Modelling 20-21 May, 2016 – Warsaw, Poland

Optical Bistability and Self-Pulsation with Long-Range Hybrid Plasmonic Disk Resonators

T. Christopoulos¹, O. Tsilipakos², E. E. Kriezis¹

¹Dept. of Electrical and Computer Engineering, Aristotle University of Thessaloniki ²Inst. of Electronic Structure and Laser, Foundation for Research and Technology Hellas

www.photonics.ee.auth.gr

- Long-Range Hybrid Plasmonic Waveguide
- Physical System: Side-Coupled Disk Resonator
- Perturbation Theory & CMT Framework: Kerr effect and Two Photon Absorption
- System Design
- Perturbation Theory & CMT Framework: Free Carrier Effects
- CW Performance Assessment
- Temporal Response
- Stability Analysis and Self-Pulsation

- Long-Range Hybrid Plasmonic Waveguide
- Physical System: Side-Coupled Disk Resonator
- Perturbation Theory & CMT Framework: Kerr effect and Two Photon Absorption
- System Design
- Perturbation Theory & CMT Framework: Free Carrier Effects
- CW Performance Assessment
- Temporal Response
- Stability Analysis and Self-Pulsation

Nonlinear long-range hybrid plasmonic waveguide (NL-LRHPW)

- □ "Combination" of two CGS with nonlinear polymer **DDMEBT** $(n_2 = 1.7 \times 10^{-17} \text{ m}^2/\text{W})$
 - Silver for lower resistive losses

Waveguide Structure [Binfeng, JOSA B 26, 2009] [Bian, Opt. Expr. 17, 2009]

Material Properties [Esembeson, Adv. Mater. 20, 2008] [Koos, Nat. Photon. 3, 2009] [Johnson, PRB 6, 1972] Two supported modes

Symmetric

- ☑ Low resistive losses
- \square Large L_{prop}
- ☑ Strong confinement

Antisymmetric

- ☑ High resistive losses
- \blacksquare Poor L_{prop}
- Weak confinement

Nonlinear long-range hybrid plasmonic waveguide (NL-LRHPW)

- ☐ Substrate de-symmetrizes LRHPW profile → Higher resistive losses
- \square Profile re-symmetrization by h^{\perp}_{Si} modification \rightarrow Resistive losses restoration

[Ma, JOSA B 14, 2014]

Asymmetric profile

Re-symmetrized profile

- \square Large propagation length: $L_{prop} \sim 1100 \ \mu m$ (15 times higher than CGS)
- ☑ Strong confinement: $A_{eff} \sim 0.07 \mu m^2$ (only 40% larger than CGS)
- ☑ High nonlinear coefficient: $\gamma_{wq} \sim 1485 j11.4 \text{ W}^{-1}\text{m}^{-1}$
 - Real part: Kerr effect (97% DDMEBT, 3% Si)
 - Imaginary part: TPA in Si → leads to FCEs

- Long-Range Hybrid Plasmonic Waveguide
- Physical System: Side-Coupled Disk Resonator
- Perturbation Theory & CMT Framework: Kerr effect and Two Photon Absorption
- System Design
- Perturbation Theory & CMT Framework: Free Carrier Effects
- CW Performance Assessment
- Temporal Response
- Stability Analysis and Self-Pulsation

Nonlinear disk resonator structure

Nonlinear disk side-coupled with LRHPW bus waveguide

- ☐ **Intensity build-up** in resonator → Nonlinearity enhancement
- \square Disk: Reduced radiation losses \rightarrow Higher Q
- □ Compact structure

[Tsilipakos, Christopoulos and Kriezis, JLT 34, 1333, 2016]

- Long-Range Hybrid Plasmonic Waveguide
- Physical System: Side-Coupled Disk Resonator
- Perturbation Theory & CMT Framework: Kerr effect and Two Photon Absorption
- System Design
- Perturbation Theory & CMT Framework: Free Carrier Effects
- CW Performance Assessment
- Temporal Response
- Stability Analysis and Self-Pulsation

Modelling Framework (basic idea)

[Bravo-Abad, JLT 25, 2539, 2007] [Wang, JLT 31, 313, 2013]

Perturbation Theory for instantaneous nonlinear effects

Uncoupled nonlinear resonator

- \Box Linear regime: Unperturbed resonant frequency ω_0
- □ *Nonlinear regime*:
 - Frequency shift $Re\{\Delta\omega\}$ due to nonlinear self-action
 - **Nonlinear losses Im** $\{\Delta\omega\}$ due to **TPA**

$$\Delta\omega = \left(\gamma_{\rm Kerr} + j\gamma_{\rm TPA}\right)W \begin{cases} \gamma_{\rm Kerr} = \frac{1}{4} \left(\frac{\omega_0}{c_0}\right)^3 c_0 \omega_0 \kappa_{\rm Kerr} n_2^{\rm max} \\ \gamma_{\rm TPA} = \frac{1}{8} \left(\frac{\omega_0}{c_0}\right)^3 c_0^2 \kappa_{\rm TPA} \beta_{\rm TPA}^{\rm max} \end{cases}$$
• Both proportional to stored energy W
• Both proportional to nonlinear feedback parameters κ , measuring overlap W

$$\begin{split} \kappa_{\mathrm{Kerr}} &= \left(\frac{c_0}{\omega_0}\right)^3 \frac{\frac{1}{3} \iiint_V n_2(\mathbf{r}) n^2(\mathbf{r}) \left[\left|\mathbf{E}_0 \cdot \mathbf{E}_0\right|^2 + 2\left|\mathbf{E}_0\right|^4\right] \mathrm{d} \, V}{\left[\frac{1}{2} \iiint_V n^2(\mathbf{r}) \left|\mathbf{E}_0\right|^2 \mathrm{d} \, V\right]^2 n_2^{\mathrm{max}}} \\ \kappa_{\mathrm{TPA}} &= \left(\frac{c_0}{\omega_0}\right)^3 \frac{\frac{1}{3} \iiint_V \beta_{\mathrm{TPA}}(\mathbf{r}) n^2(\mathbf{r}) \left[\left|\mathbf{E}_0 \cdot \mathbf{E}_0\right|^2 + 2\left|\mathbf{E}_0\right|^4\right] \mathrm{d} \, V}{\left[\frac{1}{2} \iiint_V n^2(\mathbf{r}) \left|\mathbf{E}_0\right|^2 \mathrm{d} \, V\right]^2 \beta_{\mathrm{TPA}}^{\mathrm{max}}} \end{split}$$

- nonlinear feedback measuring overlap w/ DDMEBT and Si, respectively
- Obtained from **linear** full-wave simulation (3D-VFEM)

Temporal coupled mode theory (CMT)

$$\frac{\mathrm{d}a}{\mathrm{d}t} = j \left(\omega_0 + \mathrm{Re}\{\Delta\omega\}\right) a - \frac{1}{\tau_i} a - \frac{1}{\tau_e} a - \frac{1}{\tau_{\mathrm{TPA}}} a + \mu s_i$$

$$s_t = s_i + \mu a$$

$$\mathrm{d}P_{\mathrm{TPA}} = \frac{1}{2} \mathrm{Re} \left\{ \mathbf{E}_{\scriptscriptstyle 0}^* \cdot j \omega \mathbf{P}^{\scriptscriptstyle (3)} \right\} \mathrm{d}\, V \Rightarrow P_{\mathrm{TPA}} = 2 \gamma_{\mathrm{TPA}} \left| a \right|^4$$

 ω_0 unperturbed resonant frequency

Re{ $\Delta\omega$ } nonlinear frequency shift photon lifetime, $\tau = 2Q/\omega$

 $1/\tau_{TPA}$ TPA losses factor

 μ coupling coefficient, $\mu = (2/\tau_e)^{1/2}$

s w/g mode amplitudes, $|s|^2=P$

Normalized detuning: $\delta = \tau_i(\omega - \omega_0)$

Quality factor ratio: $r_Q = Q_i / Q_e = au_i / au_e$

 $\textit{TPA losses factor:} \quad r_{\text{TPA}} = \frac{\gamma_{\text{TPA}}}{\gamma_{\text{Kerr}}} = \frac{\kappa_{\text{TPA}}}{\kappa_{\text{Kerr}}} \frac{\beta_{\text{TPA}}^{\text{max}}}{2k_0 n_2^{\text{max}}}$

Steady-state response

$$\begin{split} \frac{p_{\text{out}}}{p_{\text{in}}} &= \frac{(\delta + p_i)^2 + (1 - r_Q + r_{\text{TPA}} p_i)^2}{(\delta + p_i)^2 + (1 + r_Q + r_{\text{TPA}} p_i)^2} \\ p_{\text{TPA}} &= r_{\text{TPA}} p_i^2 \\ \text{with} \\ p_i &= p_{\text{in}} - p_{\text{out}} - p_{\text{TPA}} \end{split}$$

Kerr characteristic power

$$P_0^{\rm Kerr} = \frac{2}{\tau_i^2 \gamma_{\rm Kerr}} = \frac{2}{\left(\frac{\omega_0}{c_0}\right)^2 \kappa_{\rm Kerr} Q_i^2 n_2^{\rm max}} \propto \frac{1}{\kappa_{\rm Kerr} Q_i^2}$$

Temporal coupled mode theory (CMT)

Steady-state response

$$\begin{split} \frac{p_{\mathrm{out}}}{p_{\mathrm{in}}} &= \frac{(\delta + p_i)^2 + (1 - r_Q + r_{\mathrm{TPA}} p_i)^2}{(\delta + p_i)^2 + (1 + r_Q + r_{\mathrm{TPA}} p_i)^2} \\ p_{\mathrm{TPA}} &= r_{\mathrm{TPA}} p_i^2 \\ \text{with} \\ p_i &= p_{\mathrm{in}} - p_{\mathrm{out}} - p_{\mathrm{TPA}} \end{split}$$

- ☐ Closed-form 2x2 polynomial system
- □ Allows for constructing the hysteresis loop
- \square Admits **three** real positive solutions (for appropriate p_{in} levels and detuning)
- **□** Detuning threshold:
 - $\partial p_{in} / \partial p_{out} = 0$ and positive discriminant

$$\delta < -\frac{(1+r_Q)\left(\sqrt{3}+r_{\text{TPA}}\right)}{1-\sqrt{3}r_{\text{TPA}}}$$

- Long-Range Hybrid Plasmonic Waveguide
- Physical System: Side-Coupled Disk Resonator
- Perturbation Theory & CMT Framework: Kerr effect and Two Photon Absorption
- System Design
- Perturbation Theory & CMT Framework: Free Carrier Effects
- CW Performance Assessment
- Temporal Response
- Stability Analysis and Self-Pulsation

The uncoupled disk as an eigenvalue problem: P_0 minimization

Parametric analysis w.r.t. radius R for <u>air-suspended</u> disk

- \square R < 0.8 μ m \rightarrow Significant radiation losses
- \square $R > 1.5 \ \mu m \rightarrow Q_i$ bound by resistive losses (~15,500)
- \square κ , Q_i : **Opposing trends** with radius
- \square **Minimum** P_0 or maximum κQ_i^2 product

The uncoupled disk as an eigenvalue problem: Re-Symmetrization

- Mode de-symmetrizes
- ☐ Re-symmetrization process

Resonant mode

 $(R = 1.158 \mu m, m = 10, \lambda_{res} = 1550 nm)$

Asymmetric profile

Re-symmetrized profile

- ☑ Resistive losses restoration
- \square Similar κ
- \blacksquare Higher radiation losses ($n_{SiO2} > n_{Air}$)

Optimum value: $R = 1.158 \mu m$

- $\square \kappa_{\text{Kerr}} = 1.26 \times 10^{-2} \mid \kappa_{\text{TPA}} = 8.3 \times 10^{-4}$
- $Q_i = 10720$
- $\Box P_0^{\text{Kerr}} = 5 \text{ mW}$

The coupled disk as an eigenvalue problem: Critical coupling

Parametric analysis w.r.t. coupling gap g

- \Box **Loaded** quality factor Q_I
- □ **External** quality factor: $Q_e^{-1} = Q_i^{-1} Q_i^{-1}$
- \Box Quality factor **ratio** $r_Q = Q_i/Q_e$
- \Box Critical coupling ($r_Q = 1$) for minimum transmission on resonance

Critical coupling $(r_Q=1) \rightarrow g = 400 \text{ nm}$

To recapitulate...

Physical system design

- □ $min\{P_0\}$ → **R** = **1.158** µm
- \Box $r_{\rm O} = 1 \rightarrow g = 400 \text{ nm}$

System Parameters

- $Q_i = 10720$
- \square $\kappa_{\text{Kerr}} = 1.27 \times 10^{-2}$ $\rightarrow P_0^{\text{Kerr}} = 5 \text{ mW}$
- $\square \kappa_{TPA} = 8.3 \times 10^{-4} \rightarrow r_{TPA} = 0.0095$
- \Box $\delta_{th} = -3.54$
- \Box $\delta = 1.57\delta_{th} = -5.55 \rightarrow \lambda_0 = 1550.4 \text{ nm}$

- Long-Range Hybrid Plasmonic Waveguide
- Physical System: Side-Coupled Disk Resonator
- Perturbation Theory & CMT Framework: Kerr effect and Two Photon Absorption
- System Design
- Perturbation Theory & CMT Framework: Free Carrier Effects
- CW Performance Assessment
- Temporal Response
- Stability Analysis and Self-Pulsation

Perturbation Theory for FCEs

- Frequency shift $\Delta\omega_{FCD}$ due to Free Carrier Dispersion
- Nonlinear losses $1/\tau_{FCA}$ due to Free Carrier Absorption

$$\frac{\Delta \omega_{_{\mathrm{FCE}}}}{\omega_{_{0}}} = \frac{\Delta \omega_{_{\mathrm{FCD}}} + j\tau_{_{\mathrm{FCA}}}^{-1}}{\omega_{_{0}}} = -\frac{1}{2} \frac{\iiint_{_{V}} \Delta \chi_{_{\mathrm{FCE}}}^{(1)} \left|\mathbf{E}_{_{0}}\right|^{2} \mathrm{d}\,V}{\iiint_{_{V}} n^{2} \left|\mathbf{E}_{_{0}}\right|^{2} \mathrm{d}\,V}$$

$$\sigma_n^e = 8.8 \times 10^{-28} \,\mathrm{m}^3$$

$$\sigma_n^h = 4.6 \times 10^{-28} \,\mathrm{m}^3$$

$$\sigma_a = 14.5 \times 10^{-22} \,\mathrm{m}^2$$

$$\Delta\chi_{\text{\tiny FCE}}^{(1)} = 2n\Delta n_{\text{\tiny FCD}} - j\frac{nc_{_0}}{\omega}\Delta a_{\text{\tiny FCA}} \begin{cases} \Delta n_{\text{\tiny FCD}} = -\sigma_{_n}^e N - \left(\sigma_{_n}^h N\right)^{0.8} = -\left(\sigma_{_n}^e + \left(\sigma_{_n}^h\right)^{0.8} \bar{N}^{-0.2}\right) N = -\sigma_{_n}\left(\bar{N}\right) N \\ \Delta a_{\text{\tiny FCA}} = -\sigma_{_a} N \end{cases}$$

Free Carrier Density

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\frac{N}{\tau_c} + \frac{1}{2\hbar\omega_0} \frac{\mathrm{d}P_{\mathrm{TPA}}}{\mathrm{d}V}$$

Weighted Free Carrier Density

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\frac{N}{\tau_c} + \frac{1}{2\hbar\omega_0} \frac{\mathrm{d}P_{\mathrm{TPA}}}{\mathrm{d}V} \qquad \bar{N} = \frac{\iiint_V N(\mathbf{r}) \left|\mathbf{E}_0(\mathbf{r})\right|^2 \mathrm{d}V}{\iiint_V \left|\mathbf{E}_0(\mathbf{r})\right|^2 \mathrm{d}V}$$

Coordinate-independent Free Carrier Density

$$\frac{\mathrm{d}\bar{N}}{\mathrm{d}t} = -\frac{\bar{N}}{\tau_c} + \gamma_{\mathrm{N}} W^2$$

- Carrier lifetime $\tau_c \sim 0.5$ ns
- Reduction to $\tau_{\rm c} \sim 10$ ps by carrier sweeping or proton bombardment

Perturbation Theory for FCEs

Continuous Wave Conditions

$$\begin{split} \Delta \omega_{\text{FCE}} &= \left(\gamma_{\text{FCD}} + j \gamma_{\text{FCA}} \right) W^2 \\ \gamma_{\text{FCD}} &= \frac{1}{16} \bigg(\frac{\omega_0}{c_0} \bigg)^6 \frac{\sigma_n \left(\overline{N} \right) \tau_c c_0^2}{\hbar} \kappa_{\text{FCE}} \beta_{\text{TPA}}^{\text{max}} \\ \gamma_{\text{FCA}} &= \frac{1}{32} \bigg(\frac{\omega_0}{c_0} \bigg)^6 \frac{\sigma_a \tau_c c_0^3}{\hbar \omega_0} \kappa_{\text{FCE}} \beta_{\text{TPA}}^{\text{max}} \end{split}$$

$$\kappa_{\text{FCE}} = \left(\frac{c_0}{\omega_0}\right)^6 \frac{1}{3} \frac{\iiint_V \beta_{\text{TPA}}(\mathbf{r}) n^3(\mathbf{r}) \left[\left|\mathbf{E}_0 \cdot \mathbf{E}_0\right|^2 + 2\left|\mathbf{E}_0\right|^4\right] \left|\mathbf{E}_0\right|^2 \, \mathrm{d}\,V}{\left[\frac{1}{2} \iiint_V n^2(\mathbf{r}) \left|\mathbf{E}_0\right|^2 \, \mathrm{d}\,V\right]^3 \beta_{\text{TPA}}^{\text{max}}} \quad \bullet \quad \bullet$$

$$\kappa_{\text{N}} = \left(\frac{c_0}{\omega_0}\right)^6 \frac{1}{3} \frac{\iiint_V \beta_{\text{TPA}}(\mathbf{r}) n^3(\mathbf{r}) \left[\left|\mathbf{E}_0 \cdot \mathbf{E}_0\right|^2 + 2\left|\mathbf{E}_0\right|^4\right] \left|\mathbf{E}_0\right|^2 \, \mathrm{d}\,V}{\iiint_V \left|\mathbf{E}_0\right|^2 \, \mathrm{d}\,V \left[\frac{1}{2} \iiint_V n^2(\mathbf{r}) \left|\mathbf{E}_0\right|^2 \, \mathrm{d}\,V\right]^2 \beta_{\text{TPA}}^{\text{max}}} \quad \bullet$$

Pulsed Conditions

$$\Delta\omega_{\text{FCE}} = \left(\gamma_{\text{FCD}}^{\text{dyn}}\sigma_{n}\left(\bar{N}\right) + j\gamma_{\text{FCA}}^{\text{dyn}}\right)\bar{N}$$

$$\gamma_{\text{FCD}}^{\text{dyn}} = \frac{1}{2}\omega_{0}\frac{\kappa_{\text{FCE}}}{\kappa_{\text{N}}}$$

$$\gamma_{\text{FCA}}^{\text{dyn}} = \frac{1}{4}c_{0}\frac{\kappa_{\text{FCE}}}{\kappa_{\text{N}}}\sigma_{a}$$

$$\gamma_{\text{N}} = \frac{1}{8}\left(\frac{\omega_{0}}{c_{0}}\right)^{6}\frac{c_{0}^{2}}{\hbar\omega_{0}}\kappa_{\text{N}}\beta_{\text{TPA}}^{\text{max}}$$

- Both proportional to W² or N
- Nonlinear parameters κ measuring overlap w/ Si
- Obtained from linear full-wave simulation (3D-VFEM)
- **Different** from κ_{TPA}

CMT with FCEs

CMT equations

$$\frac{\mathrm{d}a}{\mathrm{d}t} = j \left(\omega_0 + \Delta\omega_\mathrm{Kerr} + \Delta\omega_\mathrm{FCD}\right) a - \frac{1}{\tau_i} a - \frac{1}{\tau_e} a - \frac{1}{\tau_\mathrm{TPA}} a - \frac{1}{\tau_\mathrm{FCA}} a + \mu s_i$$

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\frac{N}{\tau_c} + \frac{1}{2\hbar\omega_0} \frac{\mathrm{d}P_{\mathrm{TPA}}}{\mathrm{d}V}$$

[Tsilipakos, Christopoulos and Kriezis, JLT 34, 1333, 2016]

CW Normalization Process

$$\tilde{u} = \sqrt{\tau_i \gamma_{\mathrm{Kerr}}} \tilde{a}$$
 $\tilde{\psi}_i = \tilde{s}_i / \sqrt{P_0^{\mathrm{Kerr}}}$

- ☑ Can be solved numerically for producing bistability loop
- Not in polynomial form, cannot give detuning limit

$$\begin{split} r_{\text{FCD}} &= \frac{\gamma_{\text{FCD}}}{\tau_{i} \gamma_{\text{Kerr}}^{2}} = \frac{\sigma_{n} \left(\overline{N} \right) \tau_{c}}{\tau_{i} \omega_{0}^{2} \hbar} \frac{\kappa_{\text{FCE}}}{\kappa_{\text{Kerr}}^{2}} \frac{\beta_{\text{TPA}}^{\text{max}}}{\left(n_{2}^{\text{max}} \right)^{2}} \quad r_{\text{FCD}}^{\text{dyn}} \left(\overline{n} \right) = \frac{r_{\text{FCD}}}{\tau_{c}^{\prime}} \\ r_{\text{FCA}} &= \frac{\gamma_{\text{FCA}}}{\tau_{i} \gamma_{\text{Kerr}}^{2}} = \frac{\sigma_{a} \tau_{c} c_{0}}{2 \tau_{i} \omega_{0}^{3} \hbar} \frac{\kappa_{\text{FCE}}}{\kappa_{\text{Kerr}}^{2}} \frac{\beta_{\text{TPA}}^{\text{max}}}{\left(n_{2}^{\text{max}} \right)^{2}} \qquad r_{\text{FCA}}^{\text{dyn}} = \frac{r_{\text{FCA}}}{\tau_{c}^{\prime}} \end{split}$$

Pulsed Normalization Process

$$\overline{n} = \left(\tau_i \gamma_{\text{Kerr}}^2 / \gamma_{\text{N}}\right) \overline{N} \qquad \qquad \tau_c' = \tau_c / \tau_i$$

$$\begin{split} \frac{\mathrm{d}\tilde{u}}{\mathrm{d}t} &= j \Big(-\delta - \left| \tilde{u} \right|^2 + r_{\mathrm{FCD}}^{\mathrm{dyn}} \left(\overline{n} \right) \overline{n} \Big) \tilde{u} - \\ & \left(1 + r_Q + r_{\mathrm{TPA}} \left| \tilde{u} \right|^2 + r_{\mathrm{FCA}}^{\mathrm{dyn}} \overline{n} \right) \tilde{u} + j 2 \sqrt{r_Q} \tilde{\psi}_i \\ \frac{\mathrm{d}\overline{n}}{\mathrm{d}t} &= -\frac{\overline{n}}{\tau_c} + \left| \tilde{u} \right|^4 \end{split}$$

- ☑ Can be also solved numerically
- \square Includes the dependence of n on $\sigma_n(n)$
- ☑ Allows for calculating device response under ultrafast pulses

Summing up nonlinear parameters

Nonlinear Parameters

Depends on carrier lifetime $au_{
m c}$

	Parameter	Value
$\left\{ \right.$	$r_{ m TPA}$	0.0095
	$r_{\scriptscriptstyle m FCD} \left(au_c = 8 \; m ps ight)$	$0.0294 (P_{\rm in} = 40 \text{ mW})$
	$r_{\text{FCA}}(\tau_c = 8 \text{ ps})$	0.0019
	$r_{ m FCD}^{ m dyn}$	$0.0206 + 0.0972\overline{n}^{-0.2}$
	$r_{ m FCA}^{ m dyn}$	0.0042

Depends on input power P_{in} via dependence on N

Depends on normalized carrier density *n*

- Long-Range Hybrid Plasmonic Waveguide
- Physical System: Side-Coupled Disk Resonator
- Perturbation Theory & CMT Framework: Kerr effect and Two Photon Absorption
- System Design
- Perturbation Theory & CMT Framework: Free Carrier Effects
- CW Performance Assessment
- Temporal Response
- Stability Analysis and Self-Pulsation

Bistability curve, TPA enclosure

Instantaneous Effects Performance

- \Box $P_{in} = 28 \text{ mW}$ for bistability
- \Box IL = 0.75 dB @ point A
- \Box ER = 31 dB @ $P_{A'}$
- \Box Weak contribution of TPA to ER and P_{in} (red curve)

Bistability curve, TPA + FCEs enclosure

Full Nonlinear Performance

- \Box τ_c < 10 ps for Kerr bistability \rightarrow weak influence of FCEs
- \Box $P_{in} = 40 \text{ mW}$ for bistability
- \Box IL = 0.9 dB @ point A
- \Box ER = 22 dB @ P_{A}
- Points B, C for toggling between bistable states A, A'

- Long-Range Hybrid Plasmonic Waveguide
- Physical System: Side-Coupled Disk Resonator
- Perturbation Theory & CMT Framework: Kerr effect and Two Photon Absorption
- System Design
- Perturbation Theory & CMT Framework: Free Carrier Effects
- CW Performance Assessment
- Temporal Response
- Stability Analysis and Self-Pulsation

Temporal response

Memory Operation

- □ Initially $P_{in} = P_A \rightarrow \text{System at high-output}$ state
- □ 3rd-order **super-Gaussian pulses** (FWHM = 26 ps) for **toggling states**
 - 1st pulse (peak) → ABA' → low-output state
 - 2nd pulse (dip) \rightarrow A'CA \rightarrow high-output state

Carrier evolution

- ☐ Rise time: 19 ps
 - Limited by cavity lifetime (FCs generated instantaneously)
- ☐ Fall time: 47 ps
 - Limited by cavity & carrier lifetime (FCs recombine with τ_c)
- □ **Ultrafast** memory operation despite FCEs (> 10 Gbps)

- Long-Range Hybrid Plasmonic Waveguide
- Physical System: Side-Coupled Disk Resonator
- Perturbation Theory & CMT Framework: Kerr effect and Two Photon Absorption
- System Design
- Perturbation Theory & CMT Framework: Free Carrier Effects
- CW Performance Assessment
- Temporal Response
- Stability Analysis and Self-Pulsation

Stability Analysis

CW Maps (δ - P_{in} plane)

1st order stability analysis

$$\tilde{u}' = \tilde{u} + \delta \tilde{u} \quad \overline{n}' = \overline{n} + \delta \overline{n}$$

After some algebra

$$\mathrm{d}\varepsilon \, / \, \mathrm{d}t = \mathbf{J}\varepsilon \, \text{ with } \varepsilon = \begin{bmatrix} \delta \tilde{u} & \delta \tilde{u}^* & \delta \overline{n} \end{bmatrix}^T$$

Eigenvalues overview as in [Chen, Opt. Expr. 20, 7454, 2012]

Self-Pulsation

- □ Oscillating output for CW input
- □ Appears when two phenomena have similar lifetimes
 - FCD lifetime ($\tau_c \sim 40 \text{ ps}$)
 - Coupling between bus waveguide and resonator ($\tau_e = \tau_i \sim 18 \text{ ps}$)

Eigenvalues Overview

- ☐ J: 3x3 matric
- ☐ Three eigenvalues
 - λ_1 Real
 - $\lambda_{2,3}$ Complex
- \square Re{ $\lambda_{1,2,3}$ } < 0
- \square Re{ λ_1 } > 0 && Re{ $\lambda_{2,3}$ } < 0
- \square Re{ λ_1 } < 0 && Re{ $\lambda_{2,3}$ } > 0
- \square Re{ λ_1 } > 0 && Re{ $\lambda_{2,3}$ } > 0
- → Stable
- \rightarrow Bistability (BI)
- → Self-Pulsation (SP)
 - \rightarrow BI + SP

Self-Pulsation: CW maps

SP

- No SP region
 Kerr-induced
 BI
- $P_0^{\text{Kerr}} >> P_0^{\text{FCD}}$
- Negative detunings

SP

 Both negative and positive detunings

FCD-induced BI

- $P_0^{\text{FCD}} > P_0^{\text{Kerr}}$
- Positive detunings

SP

 Negative detunings

BI

- $P_0^{\text{Kerr}} \sim P_0^{\text{FCD}}$
- No BI region

SP

 Both negative and positive detunings

FCD-induced BI

- $P_0^{\text{FCD}} >> P_0^{\text{Kerr}}$
- Positive detunings
- Overlapping area

Self-Pulsation: Temporal Response

SP temporal response

- ☐ CW input power (27 mW)
- □ Oscillating output
 - Almost sinusoidal (Non-circular phase-space diagram)
 - f = 7.5 GHz
 - High modulation depth (>0.8)
 - f can be tuned through P_{in}
- ☐ Tunable integrated clock application !

Descending Oscillations (stable state)

Conclusion

■ Summary

- Practical plasmonic component for Bistability and Self-Pulsation
- TPA and FCEs encapsulation
- Kerr-induced bistability
 - Optical memory operation
 - Ultrafast response
- ☐ Self-Pulsation
 - Full optical clock implementation
 - Tunable output frequency

□ To probe further ...

- FCD bistability
- Thermal bistability
 - TPA, FCA and Joule heating
- Graphene comprising bistability
- Excitability

Thank you!

E-mail: cthomasa@ece.auth.gr // cthomasa@ee.auth.gr

And... there is more

Back up material!

Scope

- Nonlinear control in guided-wave plasmonics
 - \square Sub- λ confinement
 - ☑ Resistive losses

Hybrid plasmonic waveguides (best compromise)

[Oulton, Nat. Photon. 2, 2008] [Wu, Opt. Express 18, 2010]

■ Nonlinear phenomena

- Instantaneous: Kerr effect and Two Photon Absorption
- Non-instantaneous: Free Carrier Effects
- Nonlinear directional coupler

[Milián, APL 98, 2011] [Kriesch, CLEO/QELS 2012] [Pitilakis, JOSA B 30, 2013]

Resonator enhanced... → **Optical bistability**

Bistability curve, TPA enclosure

ER compensation

■ New critical coupling condition

$$Q_e^{-1} = Q_i^{-1} + Q_{\text{TPA}}^{-1}$$

- \square Modify $r_Q (r'_Q > r_Q)$
- \square Q_{TPA} depends on $P_{\text{in}} \rightarrow$ compensation only for a certain point
- □ Not necessary with TPA

Performance

- \Box $P_{in} = 28 \text{ mW}$ for bistability
- ☐ IL = 0.75 dB @ point A
- \Box **ER = 31 dB** @ $P_{A'}$
- \Box Weak contribution of TPA to ER and P_{in} (red curve)

Bistability curve, TPA + FCEs enclosure

Performance

- □ τ_c < 10 ps for Kerr bistability → weak influence of FCEs
- \Box $P_{in} = 40 \text{ mW}$ for bistability
- \Box IL = 0.9 dB @ point A
- \Box ER = 22 dB @ $P_{A'}$
- □ Points B, C for toggling between bistable states A, A'

FCE influence investigation

- ☐ FCD is more restrictive than FCA
- ☐ FCA losses can also be compensated
- \Box $r_O = 1$

- \rightarrow ER = 17 dB
- $\Gamma r'_{o} = 1.3$
 - \rightarrow ER' = 38 dB
- ☐ Bistability span and IL cannot be compensated

Self-Pulsation: CW maps

CW Maps (δ - P_{in} plane)

1st order stability analysis

$$\tilde{u}' = \tilde{u} + \delta \tilde{u} \quad \overline{n}' = \overline{n} + \delta \overline{n}$$

After some algebra

$$\mathrm{d}\varepsilon \, / \, \mathrm{d}t = \mathbf{J}\varepsilon \; \text{with} \; \varepsilon = \begin{bmatrix} \delta \tilde{u} & \delta \tilde{u}^* & \delta \overline{n} \end{bmatrix}^T$$

Eigenvalues overview in [Chen, Opt. Expr. 20, 7454, 2012]

Kerr-induced BI

- $P_0^{\text{Kerr}} < P_0^{\text{FCD}}$
- Negative detunings
- Star marks BI operation point

Self-Pulsation (SP)

- ☐ Oscillating output for CW input
- Appears when two phenomena have similar lifetimes
 - FCD lifetime ($\tau_c \sim 40 \text{ ps}$)
 - Coupling between bus waveguide and resonator $(\tau_e = \tau_i \sim 18 \text{ ps})$

SP

- Both negative and positive detunings
- $\tau_c \sim 2\tau_i$
- Star marks SP operation point

FCD-induced BI

- $P_0^{\text{FCD}} < P_0^{\text{Kerr}}$
- Positive detunings

Self-Pulsation: Temporal Response

SP temporal response

- ☐ CW input power (27 mW)
- Oscillating output
 - Carriers and cavity energy oscillates out of phase
 - Almost sinusoidal (Non-circular phase-space diagram)
 - f = 7.5 GHz
 - High modulation depth (>0.8)
 - f can be tuned through P_{in}
- ☐ Tunable integrated clock application !

Self-Pulsation: FM modulator

FM Modulator

- \square Amplitude Modulation at $P_{in} \rightarrow$ Frequency Modulation at f
 - Almost linear relation between f and P_{in}
 - High MD (>0.8) for $25 < P_{in} < 280 \text{ mW}$
 - Assure sinusoidal response